
Draft date: 14 March 2005

 8.3.5 Variable-Length Arrays

One of the most attractive features of binary tables is that any field of the table can be an
array. In the standard case this is a fixed size array, i.e., a fixed amount of storage is
allocated in each record for the array data--whether it is used or not. This is fine so long
as the arrays are small or a fixed amount of array data will be stored in each record, but if
the stored array length varies for different records, it is necessary to impose a fixed upper
limit on the size of the array that can be stored. If this upper limit is made too large
excessive wasted space can result and the binary table mechanism becomes seriously
inefficient. If the limit is set too low then it may become impossible to store certain types
of data in the table.

The ``variable-length array'' construct presented here was devised to deal with this
problem. Variable-length arrays are implemented in such a way that, even if a table
contains such arrays, a simple reader program which does not understand variable-length
arrays will still be able to read the main table (in other words a table containing variable-
length arrays conforms to the basic binary table standard). The implementation chosen is
such that the records in the main table remain fixed in size even if the table contains a
variable-length array field, allowing efficient random access to the main table.

Variable-length arrays are logically equivalent to regular static arrays, the only differences
being 1) the length of the stored array can differ for different records, and 2) the array
data are not stored directly in the table records. Since a field of any datatype can be a
static array, a field of any datatype can also be a variable-length array (excluding type P,
the variable-length array descriptor itself, which is not a datatype so much as a storage
class specifier). Other established FITS conventions that apply to static arrays will
generally apply as well to variable-length arrays.

A variable-length array is declared in the table header with a special field datatype
specifier of the form

rPt(emax)

where the ``P'' indicates the amount of space occupied by the array descriptor in the data
record (64 bits), the element count r should be 0, 1, or absent, t is a character denoting
the datatype of the array data (L, X, B, I, J, etc., but not P), and emax is a quantity

guaranteed to be equal to or greater than the maximum number of elements of type t
actually stored in a table record. There is no built-in upper limit on the size of a stored
array (other than the fundamental limit imposed by the range of the 32-bit array
descriptor, defined below); emax merely reflects the size of the largest array actually

stored in the table, and is provided to avoid the need to preview the table when, for
example, reading a table containing variable-length elements into a database that supports
only fixed size arrays. There may be additional characters in the TFORMn keyword
following the emax.

For example,

TFORM8 = 'PB(1800)' / Variable byte array

indicates that field 8 of the table is a variable-length array of type byte, with a maximum
stored array length not to exceed 1800 array elements (bytes in this case).

The data for the variable-length arrays in a table are not stored in the actual data records;
they are stored in a special data area, the heap, following the last fixed size data record.
What is stored in the data record is an array descriptor. This consists of two 32-bit signed
integer values: the number of elements (array length) of the stored array, followed by the
zero-indexed byte offset of the first element of the array, measured from the start of the
heap area. The meaning of a negative value for either of these integers is not defined by
this standard. Storage for the array is contiguous. The array descriptor for field N as it
would appear embedded in a data record is illustrated symbolically below:

...[field N-1][(nelem,offset)][field N+1]...

If the stored array length is zero there is no array data, and the offset value is undefined (it
should be set to zero). The storage referenced by an array descriptor must lie entirely
within the heap area; negative offsets are not permitted.

A binary table containing variable-length arrays consists of three principal segments, as
follows:

[table_header] [record_storage_area] [heap_area]

The table header consists of one or more 2880-byte FITS logical records with the last
record indicated by the keyword END somewhere in the record. The record storage area
begins with the next 2880-byte logical record following the last header record and is
NAXIS1 × NAXIS2 bytes in length. The zero indexed byte offset of the heap measured
from the start of the record storage area is given by the THEAP keyword in the header. If
this keyword is missing the heap is assumed to begin with the byte immediately following
the last data record, otherwise there may be a gap between the last stored record and the
start of the heap. If there is no gap the value of the heap offset is NAXIS1 × NAXIS2.
The total length in bytes of the heap area following the last stored record (gap plus heap)
is given by the PCOUNT keyword in the table header.

For example, suppose we have a table containing 5 rows each 168 bytes long , with a
heap area 3000 bytes long, beginning at an offset of 2880, thereby aligning the record
storage and heap areas on FITS record boundaries (this alignment is not necessarily
recommended but is useful for our example). The data portion of the table consists of 3
2880-byte FITS records: the first record contains the 840 bytes from the 5 rows of the
main table followed by 2040 fill bytes; the heap completely fills the second record; the
third record contains the remaining 120 bytes of the heap followed by 2760 fill bytes.
PCOUNT gives the total number of bytes from the end of the main table to the end of the
heap and in this example has a value of 2040 + 2880 + 120 = 5040. This is expressed in
the table header as:

NAXIS1 = 168 / Width of table row in bytes
NAXIS2 = 5 / Number of rows in table
PCOUNT = 5040 / Random parameter count
 ...
THEAP = 2880 / Byte offset of heap area

The values of TSCALn and TZEROn for variable-length array column entries are to be
applied to the values in the data array in the heap area, not the values of the array

descriptor. These keywords can be used to scale data values in either static or variable-
length arrays.

While the above description is sufficient to define the required features of the variable-
length array implementation, some hints regarding usage of the variable-length array
facility may also be useful.

Programs which read binary tables should take care to not assume more about the
physical layout of the table than is required by the specification. For example, there are no
requirements on the alignment of data within the heap. If efficient runtime access is a
concern one may want to design the table so that data arrays are aligned to the size of an
array element. In another case one might want to minimize storage and forgo any efforts
at alignment (by careful design it is often possible to achieve both goals). Variable-length
array data may be stored in the heap in any order, i.e., the data for record N+1 are not
necessarily stored at a larger offset than that for record N. There may be gaps in the heap
where no data are stored. Pointer aliasing is permitted, i.e., the array descriptors for two
or more arrays may point to the same storage location (this could be used to save storage
if two or more arrays are identical).

Byte arrays are a special case because they can be used to store a ``typeless'' data
sequence. Since FITS is a machine-independent storage format, some form of machine-
specific data conversion (byte swapping, floating point format conversion) is implied
when accessing stored data with types such as integer and floating, but byte arrays are
copied to and from external storage without any form of conversion.

An important feature of variable-length arrays is that it is possible that the stored array
length may be zero. This makes it possible to have a column of the table for which,
typically, no data are present in each stored record. When data are present the stored array
can be as large as necessary. This can be useful when storing complex objects as records
in a table.

Accessing a binary table stored on a random access storage medium is straightforward.
Since the data records in the main table are fixed in size they may be randomly accessed
given the record number, by computing the offset. Once the record has been read in, any
variable-length array data may be directly accessed using the element count and offset
given by the array descriptor stored in the data record.

Reading a binary table stored on a sequential access storage medium requires that a table
of array descriptors be built up as the main table records are read in. Once all the table
records have been read, the array descriptors are sorted by the offset of the array data in
the heap. As the heap data are read, arrays are extracted sequentially from the heap and
stored in the affected records using the back pointers to the record and field from the table
of array descriptors. Since array aliasing is permitted, it may be necessary to store a given
array in more than one field or record.

Variable-length arrays are more complicated than regular static arrays and may not be
supported by some software systems. The producers of FITS data products should
consider the capabilities of the likely recipients of their files when deciding whether or
not to use this format, and as a general rule should use it only in cases where it provides
significant advantages over the simpler fixed length array format. In particular, the use of
variable-length arrays may present difficulties for applications that ingest the FITS file
via a sequential input stream because the application cannot fully process any rows in the

table until after the entire fixed length table and potentially the entire heap has been
transmitted as outlined in the previous paragraph.

